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a b s t r a c t

The motion of an incompressible viscous fluid in a thin layer between two circular cylinders, inserted
into one another, with parallel axes is investigated. The cylinders rotate relative to one another about an
axis parallel to the axes of the cylinders. The stream function of the unsteady plane-parallel flow that
occurs is found by solving the boundary-value problem for the equations of hydrodynamic lubrication
theory. The motion of the fluid particles is found from the solution of a non-autonomous time-periodic
Hamiltonian system with a Hamiltonian equal to the stream function. The positions of fluid particles over
time intervals that are a multiple of the period of rotation (Poincaré points) are calculated. The set of
points is investigated using a Poincaré mapping on the phase flow. The observed transition to chaotic
motion is related to the mixing of the fluid particles and is investigated both numerically and using a
mapping, calculated with an accuracy up to the third power of the small eccentricity. The optimum mode
of motion is observed when the area of the mixing (chaos) region reaches its highest value.

© 2008 Elsevier Ltd. All rights reserved.

The viscous fluid flow in a gap between two eccentrically situated circular cylinders, rotating around their fixed axes, was first considered
by Zhukovskii in 1887. For low Reynolds numbers he obtained a biharmonic equation for the stream function and found an exact solution
for it (Ref. 1, pp.121–132). In 1904 Sommerfeld 2 (see also Ref. 3, pp. 534–542) gave a simplified solution of the problem of the viscous fluid
flow in the thin-layer approximation.

In 1906 Zhukovskii and Chaplygin presented an exact solution in bipolar coordinates and compared it with Sommerfeld’s solution (Ref.
1, pp.133–151). Much later Ballal and Rivlin,4 without any citations, derived Zhukovskii’s and Chaplygin’s accurate expression for the stream
function. Sommerfeld is usually cited in the foreign literature for this work without mentioning the pioneering research of Zhukovskii and
Chaplygin. The proof of the Reynolds approximation and also references to the literature on hydrodynamic lubrication theory can be found
in the monographs (Refs 3,5).

In the case of a uniform rotation of the cylinders, in all the cases considered the flow region does not change with time and the flow is
steady, i.e., the trajectories of the fluid particles coincide with the streamlines. In these cases the system of equations of motion of the fluid
particles are integrable. There is no dynamic chaos in such systems.

Under the Zhukovskii and Chaplygin conditions of the problem, dynamic chaos can arise if the angular velocity of rotation of the
cylinders depend on the time t. A slow periodic change in the angular velocities of the form ω(t) = ω0 + ω1cos(εωt),ε�1 was considered
in Ref. 6. Poincaré points over a modulation period of 2�/(��) were investigated in the adiabatic approximation. In this approximation
one can use the well-known Zhukovskii–Chaplygin solution. However, the characteristic chaotization time is very long – much longer
than 2�/(��).

Below we consider the extremely unsteady problem in which the frequency of variation of the flow region is identical with the frequency
of rotation of the cylinders. The stream function (the Hamiltonian) has a time period equal to the period of rotation of the inner cyclinder
2�/�, i.e., it is � times less than the period of the Hamiltonian in the approximation considered earlier.6 Correspondingly, the time taken for
chaos to occur will also be � times less. The stream function for this case was obtained in Refs 7,8. This solution is of interest in hydrodynamic
lubrication theory, since the motion in bearings is often accompanied by wobbles, i.e., a periodic change in the centre of rotation of the
inner cylinder.
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1. Unsteady flow of a viscous fluid in a layer between non-coaxial rotating cylinders

A thin layer between two circular cylinders, inserted into one another, with parallel axes is filled with an incompressible viscous fluid,
which is set in motion by the rotating inner cylinder with respect to the fixed outer cylinder.

In Fig. 1 we show the transverse section of the system of two cylinders, which represents the region between the two circles. The outer
cylinder is fixed. Its cross section is a circle of radius R2 with fixed centre O2. The cross section of the inner cylinder is a circle of radius R1
with moving centre O1. The inner cylinder rotates with angular velocity 2� about the axis passing through the second fixed point O, so that
the point O1 describes a circle of radius e/2 with centre O. The angle O1 O O2 varies with time as ∠O1OO2 = 2�t. It follows from the right
triangle O2O1P that the distance between the centres O1 and O2 varies sinusoidally

(1.1)

(see the upper right part of Fig. 1). The centre line (the x axis) is perpendicular to the cathetus O1P and rotates with angular velocity �.
It is more convenient to introduce another system of coordinates, in which the centre line (the x axis) is fixed (see the upper left part of

Fig. 1). In this case the inner cylinder rotates with angular velocity �, while its centre is on the x axis and oscillates sinusoidally as given by
(1.1). The outer cylinder rotates in the opposite direction with velocity -�.

We will refer the radii of the cylinders to the difference R2 - R1. Then the dimensionless radii of the inner and outer cylinders will be
equal to R and R + 1 respectively. By the cosine theorem, for the side O1A of the triangle O1O2A we obtain the following equation for AB

whence, when R � 1, we obtain

(1.2)

where 1/R = (R2 − R1)/R1 is the relative thickness of the gap, assumed to be a small quantity, and � is the dimensionless eccentricity,
0 ≤ � < 1.

The Reynolds criterion. The Reynolds number for the viscous fluid flow in the layer between the cylinders3,5

(1.3)

can be expressed in terms of the relative thickness of the gap 1/R

Fig. 1.
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whence it can be seen that the Stokes approximation Re � 1 is applicable at fairly high rotation speeds, if the relative thickness of the
gap is small.

It can also be noted that, when the coaxial cylinders rotate, the Navier–Stokes equations are linear for any values of Re. Hence, the Stokes
approximation will also hold when Re > 1, but for a fairly small eccentricity �. In this connection it is useful to introduce another effective
Reynolds criterion (Ref. 8, p.123) Re∗ = ���R2

1/(�R2), which is R times less than Re. Hence it follows that, for a small relative gap, the range
of applicability of the Stokes approximation Re* � 1 is much wider than the region defined by Re. However, it should be noted that for fairly
high Re (for coaxial rotation of the inner cylinder Re = 41.3

√
R1/(R2 − R1)), plane-parallel flow becomes unstable.9

For a small relative gap 1/R � 1 the linear Stokes equations can be simplified further. This simplified form of the equations was obtained
by Reynolds and Sommerfeld and is the basis of hydrodynamic lubrication theory. Below we will use the equations of this approximation
when

(1.4)

and the number Re∗ = ���R2
1/(�R) does not exceed the critical value for which plane-parallel flow ceases to be stable.

The stream function. We will now consider the solution of the problem of the flow of a viscous incompressible fluid in a layer between two
cylinders. We will use the asymptotic approximation R � 1 of hydrodynamic lubrication theory (Ref. 3, pp.534-542 and Ref. 5, pp.413-417).

We will introduce polar coordinates with centre at the point O2: r, � and the coordinates of the layer Y, � (Y = R + 1 − r∈(0,Ymax),�∈(0,2�)).
The exact upper xlimit of the flow region Ymax = AB is defined by the right-hand side of Eq. (1.2)

(1.5)

The components �r,�� of the velocity obey the continuity equation

In Y, � coordinates when R → ∞ it is simplified. Neglecting small terms of the order of 1/R, we
obtain for the components of the velocity vY = vr and v�

and we introduce the stream function H(t,�,Y)

(1.6)

For a known stream function the coordinates of the moving fluid particles �(t) nd Y(t) will be calculated from the system of ordinary
differential equations in the Hamilton form

(1.7)

in which the Hamiltonian is the stream function. To determine it we will write the equations of the fluid motion for R � 1

Hence it follows that the pressure p is independent of Y. Replacing the component of the
velocity v� by its expression in terms of the stream function, we obtain the equation

(1.8)

According to Eq. (1.8) the function H is a cubic polynomial in Y with a coefficient of the leading power of (∂p/�)/(6�R2), while the
remaining coefficients are found from the no-slip conditions on the surfaces of the cylinders.

Expressing the velocity components in terms of the stream function from formulae
(1.6), we can write the no-slip conditions in the form

(1.9)

(1.10)

Moreover, it is necessary to require that the condition for the pressure function p(0) = p(2�) to be



A.G. Petrov / Journal of Applied Mathematics and Mechanics 72 (2008) 536–549 539

unique is satisfied, which, by virtue of Eq. (1.8), can be written in the form

(1.11)

It can be shown by direct checking that, by a suitable choice of the function Q(t,�) the function

(1.12)

satisfies Eq. (1.8) and all the boundary conditions (1.9)–(1.11).
To check this we write the derivative

Hence, when Y = 0 we have H = 0,∂H/∂Y = −�, i.e., boundary conditions (1.9) are satisfied.
When Y = Ymax we have Ỹ = 1, ∂H/∂Y = ω, i.e., the first condition of (1.10) is satisfied. Further, when Y = Ymax we obtain ∂H/∂Ỹ = Ymaxω

and

Substituting the expression for ∂H/∂� into the second boundary condition of (1.10), we obtain the equation of conservation of mass in
the layer

Hence it follows that Q(t,�) is the fluid flow rate through the section, of the layer with coordinate �. Integrating this equation up to the
additive function of time, we obtain Q

(1.13)

This function of time is found from the condition for the pressure (1.11) to be unique and is equal to zero.
Substituting the third derivative of the Hamiltonian into Eq. (1.8), we obtain the pressure

The function c(t), which is independent of the coordinates in hydrodynamic lubrication theory, usually remains an undetermined
quantity,3,5 and the forces and moments acting on the cylinder do not depend on its value. In this problem it is more convenient to take it
to be equal to -ctg�t.

We then obtain for the pressure

(1.14)

Substituting expression (1.13) into (1.12), we obtain the Hamiltonian

(1.15)

The velocity field is expressed in terms of it using formulae (1.6), knowing which and the pressure field (1.14), we can calculate the forces
and moments acting on the cylinder. This is usually also the main aim of the investigation. In this paper we are interested in the problem
of investigating the nature of the motion of the fluid particles in the velocity field obtained.

2. The motion of particles of a viscous fluid in a layer between the cylinders

Poincaré points. Numerical calculation. The locations of the points �n, Yn at instants of time tn = 2�n/� are found from the solution of
the Cauchy problem for the Hamilton Eq. (1.7).

These points are called Poincaré points (PPs).
At instants of time tn the axes O1 and O2 of the inner and outer cylinders coincide, and the flow region, in �, Y variables, is a rectangle

�∈(0,2�),Y∈(0,1). In Fig. 2 we show the PP in the �, Y plane for different values of the parameter �, obtained by numerical solution of Eq. (1.7)
using the Runge–Kutta method. The points are derived at instants of time tn = 2�n/� (n = 0, 1,· · ·, 500), for which the axes of the cylinders
O1 and O2 coincide. The initial points are denoted by crosses. When � = 0 the Hamiltonian H = �(y - y2) defines an integrable Hamilton
system, corresponding to simple Couette flow. The points lie on integral curves Y = const (in polar coordinates these are concentric circles).
For a small value of the parameter � = 0.1 the pattern is close to an unperturbed one. Each series of PP, starting from a single initial point,
lies on its own invariant curve. For this case the system can be approximated fairly accurately by an integrable Hamilton system by the
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Fig. 2.

standard averaging method. For a value of � = 0.2 the phase pattern is already complicated. Some series of PPs, starting from a single initial
point, lie on several unconnected invariant curves rather than only one. When � = 0.3 the number of such curves is very large. Some series
occupy areas rather than curves. Such behaviour of the PPs 10–13 is typical for dynamic chaos. The transition to chaos is generated in the
neighbourhood of the point � = �, Y = 1/2. It can be seen from Fig. 2 that the greatest area of chaos is reached when � ≈ 0.5. When � > 0.5 two
subregions with invariant PPs curves grow as � increases in the middle of the flow region. The PP of these never fall in these subregions.
Hence, the greatest mixing occurs when � ≈ 0.5.

Approaches to investigating dynamic chaos and mixing in hydrodynamic systems. In the theory of dynamical systems, the idea
of dynamic chaos is related to the presence of a positive Lyapunov exponent of a discrete trajectories on an attractor in the case of
Lyapunov instability, or with the non-integer Hausdorff dimension of the attractor. Rigorous and complete justification using these
definitions for the given and fairly complex Hamilton system is hardly possible. Hence, only an intuitive approach is used at the
present time in papers on hydrodynamics. For example, in Ref. 6, although the results of mathematical investigations are also cited,
they are not used for strict proofs, and the regions of dynamic chaos were established on the patterns for Poincaré points obtained
numerically.

Here we will follow a non-rigorous but intuitively understandable and clear definitions of dynamic chaos, starting from the phase
patterns. We will cite the definitions 14 for a qualitative description of the effects related to the phenomena of dynamic chaos and mixing,
reflected in Fig. 2. The trajectory of a Lagrange particle of fluid is found from the solution of problem (1.7), while a PP is the track of a particle
obtained using a cinecamera with a frame frequency corresponding to the period T. The PPs form a denumerable set of points in a plane,
which depends, generally speaking, on t0, X0 and Y0. If the set of PPs belongs to a one-dimensional line, this line is called an invariant curve.
For ordered motion, all sets of PPs form a family of invariant curves, which continuously fill the flow region (the case of ordered motion
of the particles is given below for � = 0.1 and � = 0.2). In the other case, the set of PPs fills a two-dimensional region. This case (� > 0.2) will
also be called chaotic motion of PPs.

For steady fluid motion, the invariant curves lie on the streamlines, which continuously fill the flow region, and there will be no chaos.
A chaotic situation can only arise in extremely unsteady flows. When the Hamiltonian depends periodically on the time, the set of PPs can
be calculated using the recurrence formulae Xn = PT

to
(Xn−1), where P�t

t0 , (�t = t − t0) is the mapping on the phase flow of system (1.7), or
simply the solution of problem (1.7). The mapping in the period PT

t0 is called a Poincaré mapping.
The definition of a chaotic situation introduced above does not depend on t0.14 To be specific we will choose t0 = 0, and we will dispense

with the superscripts and subscripts in the notation of the Poincaré mapping: PT
0 = P.
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The investigation of the chaotic nature of the motion using Poincaré mappings will also be called the method of Poincaré sections.
References 10, 12 and 13 are devoted to this theme, but the definition of Poincaré mapping itself is a complex computational problem.
Hence, the Poincaré points will usually be found numerically, but analytical methods will only be used for very simple systems.

An analytical method of constructing a Poincaré mapping. In Fig. 2 the occurrence of chaos is also demonstrated in direct numerical
solutions of Hamilton’s equations. It is of interest to obtain, in analytical form, those Poincaré mappings which might describe the transition
to dynamic chaos as � increases, as close as possible to those shown in Fig. 2. For this purpose we will use a method of constructing the
mapping in parametric form.14 The analytical mapping obtained in this way gave phase portraits of the PPs which are practically identical
with the numerical ones, and describes chaotic situations. The analytical form of the mapping enables us to apply methods to it that are
well known from the theory of dynamical systems, in particular, the method of Lyapunov exponents for investigating the stability of fixed
points.

We will present, in a brief form, formulae 14 for constructing a Poincaré mapping of a system with Hamiltonian H(t,q,p).
The mapping (X0,Y0) → (X1,Y1) in a period T will be calculated parametrically

(2.1)

The function �(x,y) is expressed in terms of the function 	(t,x,y), which is found from the solution of the Cauchy problem for a
Hamilton–Jacobi type equation

(2.2)

Its value at the instant of time t = T defines the parametric mapping function (2.1): 	(x,y) = 	(T,x,y). For the Hamiltonian of the standard
system

(2.3)

with a small parameter �, the function �(x,y) is calculated in the form of a series in powers of the small parameter �

(2.4)

The mapping (2.1) possesses an important property: when the following condition is satisfied

it exactly conserves the phase volume. Consequently, for an arbitrary function �(x,y), J > 0, the points (Xn,Yn),(n = 0,1,2· · ·) calculated by
this mapping will be PPs of a certain Hamilton system. If the function �(x,y) is close to the exact solution of problem (2.2), then the phase
pattern of the PPs calculated using mapping (2.1) will also be close to the pattern of PPs of the initial Hamilton system.

We will show how to construct an analytical expression for the function �(x,y) with an error of the order of �3. The initial Hamiltonian
(1.15) for the expansion in powers of � has a term H0(Y), which depends only on Y. In this case the Hamiltonian can be reduced to standard
form by a canonical replacement of variables (X, Y) → (X̄, Ȳ) using the generating function

The variables and the Hamiltonian are converted as follows:

(2.5)

and expansion (2.4) is then used. In the new Hamiltonian the term, independent of �, is eliminated, and the expansion begins from a
small term of the order of magnitude of �. This expansion is called a standard form.

3. The Poincaré mapping. Reduction of the Hamiltonian to standard form

To reduce the Hamiltonian (1.15) to standard form we make two canonical replacements. We will use the apparatus of generating
functions.
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The first replacement ϕ, Y → q̃, p̃ maps the region of the flow with curvilinear boundaries ϕ∈(0,2�Y∈(0,Ymax)) into a rectangle
q ∈ (0, 2�), p̃ ∈ (−1/2, 1/2). It has the generating function

From well-known formulae we determine the analytical form of the replacement

(3.1)

and the Hamiltonian in the new variables

The relation �(t, q̃) is defined by the first Equation of (3.1).
The second canonical replacement cancels out the first term, which is independent of �, in the Hamiltonian, and reduces the system to

the standard form q̃, p̃ → q, p. The generating function of
the replacement is constructed using formula (2.5)

We find the analytical form of the replacement and the converted Hamiltonian in terms of it

(3.2)

(3.3)

The function ϕ = ϕ(t,q,p,) is determined implicitly from the equation

(3.4)

The equations of motion of a particle in q, p variables have the form

(3.5)

From equality (3.4) we can obtain

(3.6)

Using the formulae obtained for the derivatives, we can write the equations of motion of a particle (3.5) in the initial variables �, Y

(3.7)

This system of equations is equivalent to the initial system (1.7). Hence we can obtain the PPs numerically, and the result will be identical
with that obtained above.

The Pointcaré mapping enables the PPs to be calculated from recurrence relations. Writing the expansion of Hamiltonian (3.3)

(3.8)
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and using formula (2.4), we can obtain the Poincaré mapping with an accuracy of up to �3. Reverting to the initial variables �, Y and
using transformations (3.1) and (3.2) we obtain a mapping for the PP (ϕ0,Y0) → (ϕ1,Y1) in the form of the superposition of three mappings

The first and third are mappings of the displacement

(3.9)

The intermediate mapping (Q0,p0) → (Q1,p1) is found in the parametric form (2.1)

(3.10)

in which the function �(x′,y) is calculated using series (2.4)

(3.11)

The mapping (3.9), (3.10) and (3.11) obtained can be refined considerably if we represent the mapping in a period in the form of two
mappings over a half-period. The centres of the cylinders also coincide at instants of time that are multiples of a half-period. The region �,
Y at these instants of time is also a rectangle. The mappings are constructed similarly in the form of the superposition of three mappings:
in the first half-period

in the second half-period

The analytical form of the mapping (�0,Y0) → (�1/2,Y1/2) in the first half-period has the form

(3.12)

and in the second half-period the mapping (�1/2,Y1/2) → (�1,Y1) differs only by a parametric function

(3.13)
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Fig. 3.

The functions 	 and ˜̊ are calculated as

(3.14)

The function f(y) is defined by the fourth equality of (3.11).
The residual term of the mappings obtained is of the order of (T�)3, where T is the time interval. Hence, a mapping over two half-periods

has only a quarter of the error compared with mapping over a period. Mapping over a period is applicable provided J > 0, which is satisfied
in the interval 0 < � < 0.45, while the mapping over two half-periods is applicable over a greater range: J > 0: 0 < � < 0.59.

In Fig. 3 we show phase portraits of the PPs when � = 0.2 and � = 0.4, obtained using the analytical Poincaré mapping: (a) over one period
from the solution of the algebraic Eqs. (3.9)–(3.11) and for comparison (b) – over two half-periods from the solution of Eqs. (3.12)–(3.14). A
comparison of Fig. 3 with the corresponding phase portraits in Fig. 2 shows that they not only agree qualitatively but also quantitatively.
Thus, the positions of the fixed points, denoted by the small circles, practically coincide. The elliptic and hyperbolic points correspond to
one another. The regions of chaos of the points and their ordered motion differ very little on corresponding parts of the figures. The phase
portraits in Fig. 3b (over two half-periods) agree better with the exact calculations, presented in Fig. 2, than the phase portraits in Fig. 3a
(over a single period).

The phase portrait presented in Fig. 4 for � = 0.5 is defined by formulae (3.12)–(3.14), while the mapping (3.9)–(3.11) does not exist in
this case.

Hence, when � < 0.5 the accuracy of the functions (3.11) and (3.14) and the parametric mappings obtained with them are sufficient to
determine the phase trajectories of the PPs and to describe the transition to chaos.

Fig. 4.
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4. Fixed points of the Poincaré mapping

The phase portrait of the PPs can be described qualitatively if we obtain the fixed points of the mapping and investigate their stability.
Stable fixed points are called elliptic-type points. In the neighbourhood of such a point the PPs lie on closed invariant curves, close to
ellipses. The corresponding motion is ordered.

Unstable fixed points are called hyperbolic-type points. In the neighbourhood of such a point the arrangement of the PPs may be chaotic.
The main fixed points of the mapping (�0,Y0) → (�1,Y1) are determined from the system of equations

They can be sought in the form of an asymptotic expansion in � � 1. From mapping (3.9)–(3.11) for the fixed points we obtain

(4.1)

(4.2)

System (4.2) is equivalent to two systems of equations

(4.3)

(4.4)

The first system (4.3) has two roots, which can be obtained using asymptotic expansions in powers of y. The points corresponding to
these roots have the form M1(�/2,1/2 + y) and M2(3�/2,1/2 − y), and y is

obtained from the equation

(4.5)

System (4.4) for any � has two solutions

(4.6)

and, moreover, when � > 0.587 it has solutions determined by the asymptotic expansions (� = 0.587 + 17.7y2+. . .,sinx′ = −4.54y − 32.2y3+. . .).
However, when � > 0.5 the mapping obtained is inapplicable, and hence the last solution will not be considered.

The fixed points obtained correspond to periodic solutions of Hamilton’s equations with period �t = 2�. Series of fixed points also exist
corresponding to the period 2�n. These points are found from the equations 
n = 
0 + 2�k, pn = p0 and they can also be found analytically.
We will confine ourselves to considering the stability of the fixed points (4.5) and (4.6).

The stability of the fixed points. The stability of a fixed point of the mapping (�0,Y0) → (�0,Y0) can be investigating using the linearised
mapping in its neighbourhood

(4.7)

The matrix of the mapping A can be represented in the form of the product of the matrices of the linearized mappings 1) (3.9), 2) (3.10)
and 3) (3.9)

The matrices of the mappings have the form
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The quantities a, b and c are expressed in terms of the second derivatives of the parametric function �(x,y)

Hence we obtain

We have the following expression for the trace of the matrix A

(4.8)

The characteristic equation of the linear mapping (4.7) m2 − Im + 1 = 0 when |I| ≤ 2 has complex roots, the moduli of which are equal
to unity: |m1| = |m2| = 1. In this case the fixed points will be stable (elliptic-type points). Otherwise the roots are real, one of the roots is
greater than unity (m1 > 1), and the fixed point will be unstable (a hyperbolic-type point). Taking expression (4.8) into account, the stability
condition will have the form

(4.9)

Fig. 5.
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We will investigate the stability of the fixed point M1(�/2,1/2 + y) (4.5). With an accuracy up to �3 we obtain

and, according to equality (4.5), the stability condition (4.9) takes the form

If we neglect terms O(y3), we can obtain an estimate of the stability region of the fixed point M1(ϕ = �/2, Y = 1/2 + ε/4 + O(ε3)) : 0 <
y < 1/(�

√
10) ≈ 0.1 and, taking equality (4.5) into account, � < 0.4, which agrees with the estimates previously obtained.7

Second, the symmetrically positioned fixed point M2(� = 3�/2,Y = 1/2 − �/4 + O(�3)) is stable for all values of the parameter �. These
conclusions are confirmed by a numerical experiment (Fig. 2). When � = 0.1, 0.2, 0.3 and 0.4 the points M1 and M2 are of the elliptic type.
In their neighbourhood the PPs are situated on closed invariant curves. When � = 0.5 the fixed points M1 and M2 cease to be stable and the
PPs chaotically fill almost the whole flow region.

The stability of the fixed point M3(0,1/2) (4.6) can be investigated similarly. In this case

Substitution into stability condition (4.9) gives

Hence it follows that the fixed point M3(� = 0, Y = 1/2) is unstable at least for small values of the parameter �, that is, it is a hyperbolic-type
point. The point M4(� = �, Y = 1/2) is unstable for the same values of � as M3.

Fig. 6.
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The numerical experiment agrees with these theoretical conclusions. In Fig. 2, M3 and M4 are actually hyperbolic-type points. For small
� chaos occurs in small neighbourhoods of these points. The regions of chaos increase as � increases. When � ≈ 0.5 the area of chaos is a
maximum. In this case all the fixed points M1, M2, M3 and M4 are unstable.

5. Mixing of the fluid particles

To describe the mixing we will solve the following problem. Consider a small rectangle of the phase plane with sides a and b:
�0 ≤ � ≤ �0 + a, Y0 ≤ Y ≤ Y0 + b. We will construct in this a grid, which divides each side into n equal sections. At the n × n nodes of the
grid we place the initial Poincaré points and we photograph them over 1, 2, 3, · · ·, K periods. When there is no chaos these points will be
situated in the neighbourhood of an invariant curve, passing through the chosen rectangle. An example of such a calculation for � = 0.1 is
shown in Fig. 5. The upper left corner of the initial rectangle is chosen to be at a point with coordinates �0 = 0.2 × 2�, Y0 = 0.7. The sides of
the rectangle are one-fiftieth of the sides of the rectangular fluid-flow region, i.e. a = 2�/50 and b = 1/50. In a small rectangle, in the 50 × 50
nodes of the grid there are 51 × 51 = 2601 points. In the left upper corner of Fig. 5 there is a rectangle, filled with the initial points and
points at which the fluid particles appear over a period. As can be seen, the rectangle with points has been converted in a period into an
elongated parallelogram, i.e., over a period the rectangle, by a Poincaré mapping, becomes a parallelogram. Over two periods the region
filled with points becomes an even more elongated parallelogram – a repeated Poincaré mapping of the parallelogram in the first period.
This parallelogram is shown in the right upper corner of Fig. 5. In the following parts of Fig. 5 we show mappings of the initial points after
3, 4, 5, 10, 20 and 200 periods. It can be seen that the points are uniformly intermingled in a narrow curvilinear strip, the thickness of
which is comparable with the dimensions of the small initial rectangle. The fluid particles can never penetrate outside this narrow strip.
This regimé is not chaotic.

The next calculation for � = 0.5 is shown in Fig. 6 and demonstrates good mixing of the fluid particles. The points of the rectangle located
at this position after 10 periods are uniformly distributed over a wide area, comparable in area to the whole fluid-flow region. The mixing
region corresponds to the phase portrait of the PPs when � = 0.5 (see Fig. 2).

The results shown in Fig. 3 were obtained using a parametric mapping, which reduces the calculation time by a factor of approximately
100. For monitoring purposes we also carried out calculations using the Runge–Kutta scheme for the initial differential equations. The
phase portraits obtained hardly differ.

6. Conclusion

The motion of particles of viscous fluid in a layer between eccentric rotating cylinders (Fig. 1) is described by the Hamilton Eq. (3.7). For
a small eccentricity the Poincaré points are situated on invariant curves (Fig. 2) and there is no chaos. A Poincaré mapping over a period
has four fixed points (Fig. 2): two of them elliptic

and two of them hyperbolic

In the neighbourhood of hyperbolic points a beginning of a transition to dynamic chaos is observed when � > 0.2. The area of the region
of chaos of the Poincaré points increases as � increases to a value of � ≈ 0.5.

A numerical calculation shows that when � = �0 ≈ 0.5 the points M1 and M2 become hyperbolic in a short interval 
�. At this instant the
area of chaos is a maximum. When � > �0 + 
� the points M1 and M2 again become elliptic. The motion is ordered in the neighbourhood of
these, and the area of chaos is correspondingly reduced.

Parametric Poincaré mappings enable one to calculate the fixed points, to investigate their stability and to describe the transition
to chaos. The phase portraits of the Poincaré points, obtained using an analytical Poincaré mapping (Fig. 3), agree well with numerical
experiments (Fig. 2).

The example considered is a mathematical model of a mixer for mixing media with high viscosity (more precisely, when conditions
(1.4) are satisfied). The best mixing is obtained when � ≈ 0.5.

The parametric Poincaré mapping theory developed above enables the transition to dynamic chaos in similar types of hydrodynamic
systems to be described.
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